Feasible-enabled integer variable warm start strategy for security-constrained unit commitment

摘要

Security-constrained unit commitment (SCUC) is a crucial procedure in power system planning and operation. As renewable resources are integrated, it is suggested to perform sub-hourly SCUC with a 15-minute interval. This change increases the computational burden due to more binary commitment variables. Despite the use of advanced MIP solvers, poor performance continues to be a challenge. Therefore, this paper proposes a feasible-enabled integer-variable warm-start strategy to provide feasible estimated starting values for MIP solvers before optimization. To achieve this objective, a data-driven model based on a deep neural network architecture is designed. This data-driven model takes into consideration the structural characteristics of input data, allowing it to predict the corresponding value of binary commitment variables effectively. Subsequently, an auxiliary optimization model is constructed by combining predicted values with the physical constraints of SCUC, ensuring estimated starting values are within the feasible region and mitigating the adverse effects of incorrect predicted values. Case studies conducted on two large-scale testing systems illustrate the effectiveness of the proposed method.

出版物
International Journal of Electrical Power & Energy Systems
凌佳杰
凌佳杰
博士

IEEE 学生会员,研究方向为量子计算与量子信息、电力系统机组组合优化、量子机器学习。

张梁育
张梁育
博士研究生

张梁育,浙江大学电气工程学院博士研究生在读,主要研究方向为电力系统高性能计算及动态状态估计。

耿光超
耿光超
教授 | 博士生导师

耿光超,工学博士,浙江大学电气工程学院教授、博士生导师,电机工程学系副主任,电力系统自动化所副所长,电气工程学院特聘助理,IEEE高级会员。

江全元
江全元
教授 | 博士生导师

江全元,博士、浙江大学电气工程学院教授,博士生导师,浙江省重点实验室(海洋可再生能源电气装备与系统技术研究实验室)副主任,中国电工技术学会电力系统控制与保护专业委员会委员。