Scalable multi-site photovoltaic power forecasting based on stream computing

摘要

Photovoltaic (PV) is essential for global carbon neutrality, it is imperative to forecast PV generation accurately for power operation. With the rapid growth of distributed PV sites, a scalable cloud service tends to play a vital role in PV forecasting to address the increasing cost of computing resources and data subscriptions. Such a scheme creates a possibility to further enhance forecasting performance by re-using forecasting model, data, and computing resources all in the cloud. In order to achieve this goal, this work proposes a multi-site PV forecasting system design with a message queue (MQ) and stream computing engine, where a hybrid neural network model is trained and continuously updated using real-time data. A performance benchmark with up to 60 sites served simultaneously was performed to verify the scalability of the stream computing based approach. Moreover, after incremental updating of the forecasting model, a decrease in normalized root mean square error and normalized mean absolute error of PV forecasting were observed, demonstrating that better short-term forecasting accuracy was achieved.

出版物
IET-Renewable Power Generation
孙玉玺
孙玉玺
硕士研究生

孙玉玺,硕士研究生在读,研究方向为光伏功率预测

于鹤洋
于鹤洋
博士研究生

于鹤洋,博士研究生在读,研究方向为电力系统灵活资源的深度感知和聚合调控、人工智能与物联网在电力系统中的应用。

耿光超
耿光超
副教授 | 博士生导师

耿光超,工学博士,浙江大学电气工程学院副教授、博士生导师,电机工程学系副主任,电力系统自动化所副所长,电气工程学院特聘助理,IEEE高级会员。

陈昶宇
陈昶宇
硕士研究生
江全元
江全元
教授 | 博士生导师

江全元,博士、浙江大学电气工程学院教授,博士生导师,浙江省重点实验室(海洋可再生能源电气装备与系统技术研究实验室)副主任,中国电工技术学会电力系统控制与保护专业委员会委员。