Solidifying Capacity Credit of Renewable Energy Cluster by Forecast Uncertainty Quantification

摘要

The volatility and forecast uncertainty of renewable energy present great challenges to achieving supply-demand balance in power systems. Existing approaches for assessing renewable capacity credit (CC) mainly focus on annual timescale at the planning level, which may fail to capture the impact of forecast uncertainty on power supply. This paper introduces a clustering-based multivariate kernel density estimation method to model the forecast errors of renewable clusters and then establishes a continuous multi-state model to quantify forecast uncertainty. Subsequently, a CC assessment framework for renewable cluster is developed considering forecast errors to solidify their power supply capability. The influence of forecast error on the CC of renewable is demonstrated through numerical case studies. The results demonstrate that improving forecast accuracy can effectively enhance the power supply capability of renewable energy.

出版物
2024 China International Conference on Electricity Distribution (CICED)
王仁顺
王仁顺
博士

王仁顺,电气工程博士。研究方向为储能需求评估与规划、风光储容量置信度评估与配比优化。

王世龙
王世龙
硕士

王世龙,工学硕士,中共党员。

耿光超
耿光超
教授 | 博士生导师

耿光超,工学博士,浙江大学电气工程学院教授、博士生导师,电机工程学系副主任,电力系统自动化所副所长,电气工程学院特聘助理,IEEE高级会员。

江全元
江全元
教授 | 博士生导师

江全元,博士、浙江大学电气工程学院教授,博士生导师,浙江省重点实验室(海洋可再生能源电气装备与系统技术研究实验室)副主任,中国电工技术学会电力系统控制与保护专业委员会委员。