Convergence Enhancement for Neural Network Integrated Power System Time Domain Simulation

摘要

Neural network (NN) dynamics for component modeling in power system is becoming an effective approach to improve model accuracy. However, poor convergence occurs in neural network integrated-time domain simulation (NNI-TDS) with existing numerical methods. To address this challenge, this work studies the impact of NN dynamics on convergence mathematically and develops an integrated fictitious admittance (FA) and successive over-relaxation (SOR) method, which can significantly enhance convergence and shorten simulation time. First, Norton’s theorem-guided decoder is proposed to NN dynamics for FA calculation, and convergence of NNI-TDS can be efficiently enhanced by rebuilding network equations with FA. Then, an NN dynamics-targeted SOR method that considers characteristics of each NN dynamics is proposed for iteration acceleration. Especially, the optimal SOR factors are adaptively determined without additional calculation burdens. Numerical test results on two standard test systems (39 and 2383 buses) and a practical East China Power Grid (5075 buses) illustrate the effectiveness of proposed method. Specifically, faster-than-real-time simulation is realized in test systems even with 100 NN dynamics integrated.

出版物
IEEE Transactions on Power Systems
王鑫
王鑫
博士研究生

浙江大学电气工程学院博士研究生,主要研究方向包括:电力系统元件建模、机器学习、电力系统暂态仿真。

杨珂
杨珂
博士研究生

浙江大学电气工程学院博士研究生,主要研究方向包括:电力系统元件建模、机器学习、电力系统暂态仿真。

耿光超
耿光超
教授 | 博士生导师

耿光超,工学博士,浙江大学电气工程学院教授、博士生导师,电机工程学系副主任,电力系统自动化所副所长,电气工程学院特聘助理,IEEE高级会员。

江全元
江全元
教授 | 博士生导师

江全元,博士、浙江大学电气工程学院教授,博士生导师,浙江省重点实验室(海洋可再生能源电气装备与系统技术研究实验室)副主任,中国电工技术学会电力系统控制与保护专业委员会委员。