Online state-of-charge estimation refining method for battery energy storage system using historical operating data

摘要

In battery energy storage systems (BESS), state-of-charge (SoC) is of great significance to optimize the charge and discharge schedules. Some existing SoC estimators implemented in battery management system (BMS) of BESS may suffer from significant error, which will cause permanent damage to service life or economic loss. This paper identifies the causes of inaccurate SoC in the practical BESS and confirms the result with laboratory test. On this basis, an online method based on historical operating data is proposed to refine real-time SoC estimation from BMS. In the proposed refining method, SoC reference points are initially located from historical time-series data and the maximum available capacity of charge or discharge are further determined with a weighted least squares fitting. Finally, refined SoC estimation result can be determined by enhanced coulomb counting method. The experimental results based on laboratory test data and operation data from a practical BESS prove that the proposed SoC refining approach can effectively provide more accurate estimation.

出版物
Journal of Energy Storage
肖理中
肖理中
硕士研究生

肖理中,硕士研究生在读,研究方向为电化学储能电池管理系统

李熹宁
李熹宁
博士研究生
江全元
江全元
教授 | 博士生导师

江全元,博士、浙江大学电气工程学院教授,博士生导师,浙江省重点实验室(海洋可再生能源电气装备与系统技术研究实验室)副主任,中国电工技术学会电力系统控制与保护专业委员会委员。

耿光超
耿光超
副教授 | 博士生导师

耿光超,工学博士,浙江大学电气工程学院副教授、博士生导师,电机工程学系副主任,电力系统自动化所副所长,电气工程学院特聘助理,IEEE高级会员。