Communication-Free Distributed Charging Control for Electric Vehicle Group

摘要

Large-scale renewable integration presents an effective way to decarbonize power grids, but carries increased risk of supply shortfalls owing to its volatility and uncertainty. Storage is a promising option to improve the generation adequacy of renewable. Thus, capacity credit assessment of renewable and storage is crucial in ensuring adequate generation capacity to meet loads. However, efficiently and accurately assessing capacity credit of these resources is challenging due to temporal dependencies in the operational time series (net loads and conventional generation units) and the need for extensive operation simulations. This paper develops a comprehensive multi-time-scale assessment framework integrating analytical and simulation methods to calculate the capacity credit of renewable and storage, thus capturing temporal features of these time series. Then, an interval-based strategy is proposed to simulate system operations, incorporating demand response in key scenarios. Furthermore, partitioning around medoids clustering and parallel computing techniques are employed to greatly accelerate the numerous operations for capacity credit assessment. The proposed method is validated using the RTS-79 system and a provincial real-world power grid in China. The results indicate that the developed framework can achieve efficient and refined capacity credit assessment and thus evaluate the impact of storage on the capacity credit.

出版物
IEEE Transactions on Smart Grid
于鹤洋
于鹤洋
博士研究生

于鹤洋,博士研究生在读,研究方向为电力系统灵活资源的深度感知和聚合调控、人工智能与物联网在电力系统中的应用。

耿光超
耿光超
副教授 | 博士生导师

耿光超,工学博士,浙江大学电气工程学院副教授、博士生导师,电机工程学系副主任,电力系统自动化所副所长,电气工程学院特聘助理,IEEE高级会员。

江全元
江全元
教授 | 博士生导师

江全元,博士、浙江大学电气工程学院教授,博士生导师,浙江省重点实验室(海洋可再生能源电气装备与系统技术研究实验室)副主任,中国电工技术学会电力系统控制与保护专业委员会委员。