Policy-Assisted Graph Reinforcement Learning for Real-Time Economic Dispatch

摘要

An online optimization framework with policy-assisted graph reinforcement learning (PAGRL) is proposed for real-time economic dispatch (RTED). In this framework, RTED is presented as a sequential decision problem formulated by Markov decision process (MDP). PAGRL employs a graph convolutional network to extract grid operation features containing topological information and then an agent that performs power dispatch is trained through proximal policy optimization. Moreover, the adaptiveness of agent to more hard-to-learn scenarios is enhanced by difficulty sampling, and policy-assisted action postprocessing mechanism is designed to reduce search space and improve decision quality, which provides a general performance enhancement scheme for reinforcement learning in power systems applications. Comparative studies on modified IEEE 118-bus system and real-world provincial grid demonstrate the flexible and reliable performance of the proposed approach for RTED.

出版物
Journal of Modern Power Systems and Clean Energy
张权
张权
博士研究生

张权,浙江大学电气工程学院2021级博士研究生,IEEE Student Member。

凌佳杰
凌佳杰
博士

IEEE 学生会员,研究方向为量子计算与量子信息、电力系统机组组合优化、量子机器学习。

颜融
颜融
博士
耿光超
耿光超
教授 | 博士生导师

耿光超,工学博士,浙江大学电气工程学院教授、博士生导师,电机工程学系副主任,电力系统自动化所副所长,电气工程学院特聘助理,IEEE高级会员。

江全元
江全元
教授 | 博士生导师

江全元,博士、浙江大学电气工程学院教授,博士生导师,浙江省重点实验室(海洋可再生能源电气装备与系统技术研究实验室)副主任,中国电工技术学会电力系统控制与保护专业委员会委员。